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NASA developed and tested an automated   model-based diagnostic and fault effects system 

and monitored the Orion Exploration Flight Test 1 (EFT-1) data from prelaunch to post-

landing. One primary objective was the maturation of fault management technologies that 

will be required for autonomous operations in missions operating beyond Earth orbit by using 

a large scale model with actual mission designs and flight data, across a range of environments 

and system configurations in realistic operational conditions. A second primary objective was 

to explore and demonstrate methods for cost-effective model development and maintenance, 

including automated or semi-automated model development and use of models for multiple 

purposes from design analysis through operations. Both objectives included identification of 

remaining issues that will need to be resolved in order for programs to successfully adapt and 

deploy the technology in human-rated space systems. This paper describes the methods used 

to develop and test the system fault model, techniques to monitor the data and diagnose faults 

during flight operations, and the key findings based on the results of the demonstration. 

Nomenclature 

ACAWS = Advanced Caution and Warning System 

ADIO = Analog-to-digital input/output 

ARC = Ames Research Center 

ATOM = Advanced Tool of Math 

CAD = Computer Aided Design 

EFT-1 = Exploration Flight Test 1 

EM-2 = Exploration Mission 2 

EPS = Electrical Power System 

FDIR = Fault Detection, Isolation and Recovery 

FMEA = Failure Modes and Effects Analysis 
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GUI = Graphical User Interface 

Hz = Hertz (cycles per second) 

ISP = Information Sharing Protocol 

MCC = Mission Control Center 

PDU = Power Distribution Unit 

RDS = Remote Diagnostic Server 

RPC = Remote Power Controller 

SysML = System Modeling Language 

TEAMS = Testability Engineering and Maintenance System 

I. Introduction 

UTOMATED diagnosis and determination of the effects of faults on system performance and reliability have 

been recognized as fundamental building blocks of highly efficient, automated and autonomous space 

operations1. Numerous technology research, tool development and demonstrations have been conducted to develop 

automated system level diagnostics, system health assessment, and automated decision-making, including a prototype 

precursor to the work described in this paper with the Ares 1-X test flight2 and launch operations at Kennedy Space 

Center3. However, automated fault management systems have not been widely deployed in spacecraft, beyond 

localized sub-system Fault Detection, Isolation and Recovery (FDIR) and automated transition to a safe mode from 

which human operators make recovery decisions. Although the technology foundations have been proven, there are 

several impediments to Human Space Flight program organizations deploying fault management automation to meet 

their system requirements. These impediments include lack of demonstrated success in full-scale systems, lack of trust 

of automated decisions by human operators, and uncertainty about the cost of developing, testing and maintaining 

automated operations systems. 

It is recognized that deep space human missions with light times on the order of several minutes will require much 

more dependence on autonomous operations and hence, automated decision tools that support highly autonomous 

operations with all immediate or near-term decisions made on board, either fully automatically or by the crew working 

only with the on-board systems4. To address these impediments to deployment, NASA Ames Research Center (ARC) 

developed the Advanced Caution and Warning System (ACAWS) and conducted system-scale model-based reasoning 

for automated failure diagnosis and effects of faults with the Orion Multi-Purpose Crew Vehicle’s first test flight, 

Exploration Flight Test 1 (EFT-1) in December 2014. Monitoring was conducted from pre-launch through post-

splashdown, using data transmitted to the ground, to determine the cause of failures and identify components that are 

affected by failures. Failure effects determination includes both loss of function and loss of redundancy of critical 

equipment, and coupled with fault diagnosis, provides a comprehensive view of the health of the spacecraft using a 

novel control center display user interface. The ACAWS project also demonstrated capabilities to assist operators 

using “what-if” queries that identify next worst failures to help operations teams to be prepared for the most critical 

system failures using the same model and technology. Post-mission analysis provided significant information to 

improve the focus of future technology development to continue moving toward overcoming the impediments to 

deployment of advanced health management reasoners and decision tools. 

This paper describes how we addressed the needs for maturation of health management autonomy with the Orion 

EFT-1 flight, and used the flight analysis to identify several key remaining challenges needed to progress from 

technology demonstration to full-scale deployment. We begin with describing the purpose, goals and objectives of the 

project. A discussion of some of the challenges, both technical and programmatic, of developing system models and 

methods that were used to build models for this project will show how the methods can be applied to programmatic 

use of the technology on flight programs. An assessment of the usefulness and value of fault models for fault 

management systems engineering for the Orion Program is described next. Key features of the operational architecture 

used for diagnostics with the flight data will be described followed by a discussion of the system test and evaluation 

performed prior to the Orion EFT-1 flight. Operational execution, observations and findings from the Orion EFT-1 

flight and post-flight analysis are described, followed by closing with a discussion of the advances in maturation, 

scalability and robustness that were achieved with the Orion EFT-1 flight and remaining challenges to be overcome 

before full-scale deployment will become a reality. 

A key aspect of affordability of large-scale automated health management systems is the use of fault models for 

multiple purposes from early design through operations. The ACAWS project initially developed a system fault model 

from primary design documents with semi-automated, or “power-assisted” modeling methods, and demonstrated use 

of the model in design analysis activities, including channelization analysis to determine if wiring layouts resulted in 
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hidden cases of a single fault causing loss of critical function. Follow-on modeling added information required for 

diagnosis and effects determination, successfully demonstrating a multi-use model at a scale sufficient for current 

program needs. 

The project focused on quality of health state information for correctness and usefulness in decision-making. 

Building trust in automated information systems requires that the information is correct under all conditions, 

configurations and environments, is at a level of detail useful for making response decisions and is readily understood 

by operators whether they are making decisions with the information or are monitoring the decisions made by 

automated reasoners. 

Test and verification of the system health state information using a fault model presented some challenges. The 

correctness of diagnosis and effects information was tested and analyzed using a series of failure cases developed in 

coordination with Orion Program test systems. The Orion program conducted extensive testing with nominal data 

from test facilities and the vehicle itself flowed to the Mission Control Center (MCC) for vehicle and mission control 

systems integration and test. Nominal data was recorded from these full mission tests, and failure scenarios were 

developed by over-writing fault signatures onto the nominal data to verify diagnostics in a variety of mission phases. 

Even though not a full scale verification, the exercise provided substantial insight into the challenges and risks 

involved with test and verification of a large scale diagnostic and effects model. 

To assure that the system produces the information most valuable for flight operations, a controlled evaluation 

with mission operations experts was conducted. Multiple failure scenarios were developed, varying in complexity of 

diagnosis and operational decisions, workload levels and difficulty. Evaluation runs were conducted in realistic control 

team settings to determine the effect that the system level health state information has on decision-making and 

situational awareness, and to identify the information attributes that maximize benefits. Both quantitative performance 

data and subjective feedback were collected and analyzed to determine the information and presentation features most 

useful to flight controllers, and where research and development is needed to meet operational needs for higher quality 

of health state information. Although the evaluation was conducted in a ground operations setting, the information 

can be extrapolated to on-board crew display needs as well.  

This paper will explain the project goals and objectives, the ACAWS architecture and model approach, the 

associated development challenges, and ACAWS use in Fault Management Systems Engineering.  It also presents the 

results and findings of the System Testing and Evaluations performed, and a real time direct application during the 

Orion EFT-1 mission. The paper provides conclusions, impediments to operational deployment and lays out 

recommendations for continued scalability, accuracy, correctness, usefulness of information and life cycle costs of 

health management system deployment. 

II. Project Goals and Objectives 

The EFT-1 ACAWS project was conducted to achieve two primary objectives: 

• Demonstrate that system fault models can reduce the effort and improve the results of fault management 

analysis during the systems engineering and design phases of the project. 

• Demonstrate that the same model can be used as the basis for operational fault diagnosis and determination 

of the functional and loss of redundancy effects of system faults that will be a central element of system 

autonomy requirements in deep space human exploration. 

In order to address these objectives realistically and credibly it was important to scale the models to a significant 

portion of the spacecraft and maintain accuracy and correctness. The project was not to be a proof of concept in which 

shortcuts and simplifications would be used to work around difficulties. The project team collaborated with the Orion 

Program to select the Electrical Power System (EPS) as the primary domain of the model. The EPS was selected 

because it is a major critical system with interfaces to nearly all other systems, and connectivity data was readily 

available. The model included most of the electrically powered equipment in the spacecraft from major equipment 

such as flight computers and pumps, to the operations sensors needed in system controls. The model omitted the 

Development Flight Instrumentation to focus on the spacecraft elements destined to be permanent parts of the Orion 

design. 

The project selected Qualtech Systems, Inc.’s TEAMS Designer ™ (Testability Engineering and Maintenance 

System) 5  as the fault management modeling tool, and its companion run-time reasoner TEAMS-RDS ™ (Remote 

Diagnostic Server) as the diagnostic engine. The project established some sub-goals to assess and demonstrate some 

key model development attributes, including: 
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• Model scalability. Build a model that includes a significant portion of the operationally significant faults, in 

order to show that model-based fault management can be accomplished within realistic development and 

operational resources. 

• Accuracy and realism. Develop a model that remained true to the Orion systems, including correct and 

accurate failure modes as defined by the Orion Program Failure Modes and Effects Analysis (FMEA) without 

simplifications or workarounds. 

• Model Development Efficiency. Be able to assess and demonstrate modeling methods that could be done with 

moderate costs and that could remain accurate as the design continued to change and mature. Automated 

import of available data was a key aspect of achieving the objective. 

III. Model Development Challenges 

The effort involved in building accurate spacecraft models of complex failure space are known to be a challenge, 

with high potential for model development and verification efforts to overcome the value of the model for fault 

management analysis. The project focused on two key methods to assure that modeling costs do not overwhelm the 

benefits of the fault models: 

• Use of a model for multiple analyses, design products and operational fault management. 

• Automated or semi-automated model development methods. 

A. Multiple Model Uses 

Throughout the systems engineering and design phases of a project, there are potentially numerous fault and failure 

related analyses that are performed. During operations, automated diagnosis, fault effects assessments, and recovery 

planning and execution can all be supported or assisted by the fault model. Even though different analyses and 

operational needs depend on very similar information, there is often considerable duplication that increases the overall 

effort or reduces effectiveness, as shown in Figure 1. Programs may choose to perform analysis using design data in 

 
Figure 1 – System Engineering and analysis often relies on multiple teams using low level design data to create 

products, duplicating the effort of extracting and organizing information for each product. 
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the form of spreadsheets, databases, text documents and drawings, with each analysis pulling from the same set of 

sources, duplicating the research effort needed to obtain the information. If one analysis group considers creating a 

model that helps to clarify the inputs and automate the search for analysis results, the cost of developing the model 

compared with the “brute force” method using raw data can be considerably more than the effort for the analysis.  

However, when a model serves the needs of multiple analyses and also supports operations, the model-based 

approach will generally provide value by reducing the overall effort. The Orion Program selected a channelization 

analysis as a target for demonstration of model-based fault analysis as a focal point for the ACAWS project. 

Channelization Analysis includes assessing the connectivity of the system to determine if there are single-point faults 

that can lead to loss of critical function. Orion developed a channelization database containing all the point-to-point 

connections between components. Manually, the analysis required that a team of domain experts review spreadsheet 

reports extracted from the database, essentially tracing from one row to another to find the paths from a power or data 

source to the loads at the end of the power channel. Then the analysis asked what would be affected if the power 

channel were to be cut at various points, representing a failure of the component next to the channel hypothesized to 

be cut. If the result was loss of critical functionality, the analysis flagged a design issue. In addition to loss of power, 

some failures can result in loss of sensor data that is required for fault responses. Orion design policy was that any 

FDIR algorithm that did not have valid data on all inputs would be inhibited from any execution, so that failures 

resulting in loss of data could preclude the very recovery software intended to recover from the fault. Finally, incorrect 

sensor data, such as an off-scale indication, possibly caused by some other failure, could cause incorrect execution of 

FDIR. The channelization analysis needed to assess all of these conditions. 

Although the project focused on the channelization analysis, the Orion Program conducts numerous fault 

management analysis activities during the design life cycle that draw on the similar resources. As shown in Figure 2, 

using a fault model to organize design data inputs will reduce the effort and improve the quality of the analysis and 

operations products analysis needed by program fault management. 

 
Figure 2. A Fault Model organizes system data one time to be used for multiple analysis, design product and 

operations product development. 
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B. Automated Data Import 

The data required for development of a fault model can exist in a wide range of forms and styles, varying 

extensively between flight programs (Orion and Space Launch System, for example) but also varying between 

subsystems within a program. Different design organizations make different choices about how to represent their 

design, and different subsystems have different information needs; electrical power systems information can be 

significantly different from fluid or mechanical systems. This variability presents significant challenges to developing 

methods to automate the import of data. However, the goal of automated import of data is recognized as key to efficient 

and effective use of fault models, since manual data input for both initial development and maintaining 

synchronization with inevitable design change can overwhelm the modeling effort. 

The ACAWS project addressed these challenges by assessing the data available from the Orion Program, selecting 

data sources that contained information required by the model and were amenable to automated processing, and 

applying tools previously developed and used by NASA Ames Research Center for importing into a model6. As with 

any program, design data comes in many forms, from Computer Aided Design (CAD) drawings, word processor 

documents, PowerPoint slides, databases, spreadsheets and numerous other formats. The Orion Program used a 

channelization database containing the electrical equipment information and the primary wiring segments and 

connectors between components, which constituted the power and data channels in the spacecraft. The component 

and connection information in the channelization database also forms the core of a fault model. The Orion 

channelization database could be readily exported to comma-separated value (csv) format which was readily processed 

by the existing tools after some filtering, checking and cleaning. Although it is a “power-assisted” methodology rather 

than a fully automated model creation process, the time and cost reductions are considerable. However the created 

model does not necessarily result in a visually readable model when viewed using the TEAMS Designer tool. 

Nevertheless, it proved its value in quickly building up a model populated with components, connections and failure 

modes. 

The channelization data did not include the system’s failure modes. These were obtained from Orion Failure Modes 

and Effects Analysis (FMEA). The process illustrated in Figure 3 shows the general flow that was developed to create 

data files that could be imported into the TEAMS model. The FMEA to Channelization mapping challenges were 

compounded since the FMEA did not have a complete set of items that matched exactly to the Channelization 

Connections Report. Therefore, the challenge was to map all possible FMEA items and failure modes to determine 

the best match with a Channelization End Component type. Where failure modes were not available or at an unusable 

level, the FMEA was further developed to a more complete state to fulfill the specific failure modes required by the 

 
Figure 3. Process Flow to identify the failure modes in the FMEA worksheets and match them to a 

Channelization End Component type for automated import into the TEAMS Model 
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model. Utilizing several different data files as part of the FMEA worksheets and the channelization reports, the 

development of special processes were put in place to re-arrange, filter, and to match the two different data resources 

into something that fulfilled the TEAMS model generation input requirements.  

Given the large range of possible formats of design information, an automated process that can handle any type of 

data was well beyond the scope of the project. Either modifying the data to fit the tools, or modifying the tools to fit 

the data format, could significantly enhance the ability to automate model development and interchange of data 

between models. Some aspects of both were done to adapt previously developed import tools to the Orion 

channelization data. Use of more standardized design tools and languages would significantly simplify the challenges 

of fault model development. The System Modeling Language (SysML) is an emerging design language that would 

provide a standard import source if used broadly across a spacecraft development program. SysML is a broad language 

with many choices about modeling methods and practices, so even programs using SysML will not necessarily 

generate SysML models that are compatible with TEAMS model auto-creation tools. SysML would, however, provide 

a much more contained range than the open-ended set of design tools and methods in use today. To explore how 

SysML could be used with TEAMS fault models, the project conducted a small-scale assessment of importing from 

SysML into the TEAMS model. A group at JSC has conducted studies and advocacy for broader SysML usage across 

NASA programs. This group developed a SysML model of a battery, containing multiple cells, sensors, internal 

circuitry and controls. Using a MagicDraw tool plugin, information similar to the channelization data previously 

imported was generated from the SysML sample model, demonstrating a relatively quick and simple method for 

converting SysML to a TEAMS fault model, as shown in Figure 4. The method required that the information was 

modeled in SysML constructs recognized by the plugin, but the plugin was fairly simple and could easily be modified 

to adapt to other modeling choices. It proved to be a simple method for modeling in SysML and automating the transfer 

of information to the fault model. The TEAMS Designer vendor, Qualtech Systems, Inc. is currently investigating 

 
Figure 4 – SysML models can contain much of the information required for fault models. The information can be 

automatically extracted and imported into the TEAMS fault model. 
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more advanced and comprehensive methods for information transfer between SysML and fault models relying on the 

XML representations of SysML models and the XML schemas used for TEAMS fault models. With robust model 

transformation tools, the modeling effort can be substantially reduced. Use of SysML as a standard Systems 

Engineering practice that is focused on system design (i.e., “success space”) with compatible tools for capturing and 

analyzing failure space information holds considerable promise for improved processes encompassing both design 

and fault management. 

IV. Use in Fault Management Systems Engineering 

Using the fault model developed by the ACAWS project, reports were generated that directly identified the loss 

of function and loss of redundancy that would result from each failure mode in the model. The original EFT-1 

channelization analysis had already been conducted before the ACAWS fault model was developed. 

Several of the analysts who had completed the channelization analysis were available to assess the TEAMS fault 

model for its effectiveness in simplifying the channelization analysis using model features for fault propagation from 

failure source to end effects. The Orion Program analysts had no experience in working with TEAMS models, so 

sessions were conducted with the ACAWS modelers and Orion Program analysts in which reports could be generated 

in response to analysts’ questions. In each session, the Orion analysts selected fault scenarios of interest, reviewed the 

outputs from the model and used the information to complete a standard template consisting of failure, impact and 

work-around. The ACAWS modelers navigated the model, presented the model’s outputs in either report formats or 

graphical model views depending on the Orion analyst requests. The model’s outputs were very effectively used by 

the Orion analysts to determine the impacts of failures. Failure impacts included both loss of function and loss of 

redundancy. The primary purpose of the Orion channelization analysis was to determine if there were any cases in 

which single-point failures result in loss of critical function. The analysis was conducted after program Preliminary 

Design Review and before Critical Design Review. Any cases in which loss of function could result from a single 

failure would be design errors, and the program would need to determine if the probability and consequences of the 

failure occurring would warrant design modification. By the time we conducted the analysis exercise, no additional 

such design errors were found. Although it is a difficult task to prove that there are no undetected design errors, the 

analysts concluded that using the model would clearly provide them with the information needed to detect design 

errors, and the absence of any provided confidence that the connectivity was well designed. Although they were able 

to complete the analysis using primary data sources such as CAD and spreadsheets, the assessment of the model’s 

value indicated considerable improvement. Some of the post-exercise observations were: 

• Analysis using primary source data would take about 40 hours, but doing the same analysis with the model’s 

output reports could be done in about 4 hours. 

• The model captured cross-subsystem or cross-discipline failure effects that were not present in any one 

schematic diagram. 

To complete the assessment of a model-based analysis compared with an analysis using primary source data, it is 

necessary to include the effort involved in building the model. Estimating modeling effort is not particularly 

straightforward based on a technology research and development project. Modelers had considerable experience 

building fault models on other projects, but did not have prior systems knowledge of Orion. In addition to model 

development, modelers were adapting previously started automated import tools to the Orion data. As a small-scale 

project and not tasked with rigorous model requirements for scope, accuracy and certification, the team worked toward 

soft goals for scope and accuracy but with firm completion dates. Assuming that the tools and processes were mature 

and familiar to the modeling group, the Orion model could be built with good assurance that it captured the primary 

design data correctly and was thus an accurate representation. However, the primary design data was not necessarily 

guaranteed to be accurate. We found during the course of the model development and analysis that data contained 

occasional minor errors, such as duplications, missing data or inconsistencies between related data. The rigor required 

to import data into a model requires filtering, formatting and checking the data in ways that could be overlooked by 

analysts reviewing the data. Some minor errors might be innocuous to a human analyst, such as a mismatch between 

upper or lower case that the analyst could readily conclude meant the same thing. Our model development work did 

uncover some data inconsistencies that had escaped the attention of program designers and analysts through design 

reviews and prior analysis, although they did not change the primary analysis results of the effects of faults on system 

functionality. 

The model development and analysis exercise provided some insight into a model-based design analysis process. 

A highly automated, model-based analysis whose results would be used directly to confirm a design quality would 

require a complete, well-tested model. As a model-based assistance to a team of expert analysts, the model may not 



 

 

 

 

American Institute of Aeronautics and Astronautics 
 

 

 

 

9 

require as much rigor, but would then require the analysts to confirm the results through other sources. In this scenario, 

the analyst could review the model’s results, and use them as a guide to check the CAD and spreadsheets. 

V. ACAWS Execution Architecture 

The ACAWS execution architecture for EFT-1 was developed with technology developed under previous 

technology development programs7 and adapted for use with EFT-1 data and models. Software was designed to 

execute on the ground using the EFT-1 telemetry downlink during the mission, with provisions for playback of flight 

and test data before and after the mission. The model originally developed for use in design analysis formed the basis 

for run-time health state determination during the mission. Health state determination included both diagnosis of faults 

and the determination of the effects of faults on other system components. Both loss of function and loss of redundancy 

due to a fault were determined. Displays were developed to show the diagnosed faults, the components affected by 

faults, and associated configurations and the actions of on-board FDIR related to diagnosed faults. 

ACAWS performed health state determination in a multi-tiered architecture, diagrammed in Figure 5. The tools 

and applications used for the test, evaluation and flight included: 

• TEAMS-RDS – A commercial product that performs model-based diagnosis, using the test results from the 

Fault Detector; 

• Telemetry Interface – the reception of data from the Orion spacecraft via NASA Mission Control Systems 

data distribution network; 

• Fault Detection  - Includes data intake from the downlinked telemetry, data cleaning and validation, and testing 

for indications of faults yielding PASS, FAIL or UNKNOWN test results; 

• Diagnostic Executive – Manages the interface to the diagnostic reasoner and distributes results to the System 

Effects Reasoner and Graphical User Interface, logs data; 

• System Effects Reasoner – Determines the effects, or impacts, on system components due to a diagnosed fault; 

 
Figure 5. The ACAWS architecture. ACAWS receives data from the spacecraft telemetry, performs validation and 

tests of the data in the Fault Detector, executes a Diagnostic reasoner and System Effects reasoner to determine the 

system health state and distributes information to multiple users. 
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• Graphical User Interface - Distribution and display of health state information; 

• Mission Control Center Applications – some of the key tools used by flight controllers during the EFT-1 

mission were used for telemetry displays of control and health information. They provided a realistic flight 

control environment and a basis for comparison between baseline flight control applications and with the 

addition of ACAWS displays. 

Each of these will be described in the following paragraphs. The TEAMS-RDS diagnostic reasoner and its use of 

the TEAMS model is described first, since it provides the core of fault diagnosis, and the other architecture elements 

listed above either support or depend on the TEAMS-RDS diagnosis. 

C. TEAMS-RDS 

The TEAMS fault model is a system dependency model that includes system components, their failure modes, 

connections between the modules, and test points that are used to detect indications of faults8. It also includes 

mechanisms to represent redundancy and configurations, such as ON and OFF states of equipment. The modeling 

tool, TEAMS Designer, is used to build a graphical model, and the tool then generates the run-time representations 

used by the TEAMS-RDS reasoner to perform fault diagnostics. Connections between modules represent the 

propagation paths of faults. The paths usually represent a physical path such as a wire or pipe, but could represent 

physical proximity such as a heat-sensitive component near a source of heat. The failure modes of components contain 

one or more functions affected by the failure, and tests in the model detect the presence or absence of these functions 

as they propagate (or fail to propagate) along the connection paths in the model. A test may fail because of any number 

of faults. Figure 6 shows a hypothetical Power Distribution Unit (PDU) providing power to a Pump, with internal 

components of the PDU that are viewed by expanding the PDU to open the next level in the hierarchical model. Tests 

include a Pump Rotation test, such as an RPM measurement at the pump, and power measurements at the PDU Bus 

and at the output of a Remote Power Controller (RPC) (basically a power switch). In the example, the Pump Rotation 

test could fail because of a mechanical fault of the pump, or because one of the failure modes in the Power Distribution 

Unit resulted in loss of power to the pump. If the PDU Bus Power test and PDU RPC Power test both pass, the reasoner 

exonerates the PDU components and concludes that the Pump has failed. If both PDU Bus Power and PDU RPC 

 
Figure 6. A fragment of a TEAMS model. A hypothetical power distribution component illustrates components, 

tests and propagation paths. The Power Distribution Unit is expanded to show its internal components, a Power 

Supply that provides internal power to the PDU and an RPC (switch) that controls power to the Pump.  
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Power tests fail, the reasoner 

determines that the PDU Power 

Supply has failed since it is the single 

failure that results in all three tests 

failing. 

The graphical model is reduced to 

a matrix of the tests and failure modes, 

known as a D-Matrix (from 

“dependency matrix”) for run-time 

diagnostics. A fragment of a D-Matrix 

that corresponds to the model 

fragment described above is shown in 

Figure 7. 

D. Telemetry Interface 

The Orion telemetry was 

transmitted from the EFT-1 spacecraft 

to the Mission Control Center (MCC) at JSC via various data links from pre-launch through post-landing, and 

ultimately converted and distributed within the MCC using the data distribution architecture that has been used for 

Shuttle and ISS data known as Information Sharing Protocol (ISP). The ACAWS project established a connection to 

the MCC ISP using secure data protocols and configured in a receive-only mode to assure that inadvertent data could 

not be inserted into the flight data stream. Once in the ACAWS test lab, the data was distributed to the ACAWS 

applications as well as to copies of the MCC data displays so that the team could see what the flight controllers were 

using, alongside the ACAWS diagnostics and effects displays. ACAWS diagnostic applications subscribed to about 

2,000 data elements, while the MCC displays in the ACAWS lab processed roughly 18,000 unique data elements. 

ISP was operated in a “change-only” mode so new data is received only when the downlinked value changes. The 

capability is sufficiently robust, brought on line roughly mid-life of the Shuttle program and in use for all of ISS, to 

make a valid assumption that no change in value or status meant that the data had been downlinked with the same 

value as the last value transmitted by ISP. 

Data rates of the downlinked data ranged from 40 Hz to 0.1 Hz, but ISP provided data packets at 1 Hz. For data 

downlinked at rates higher than 1 Hz, all changed values would be received as a block of data. For example, a 10 Hz 

data element may downlink 6 values that had changed from the previous data element, and 4 values that were the same 

as the previous. ISP would deliver the 6 changed values, but it could not be determined which values in the sequence 

had changed. ACAWS simplified its use of higher rate data by using only the last value received. This simplification 

did not appear to affect any of the failure modes for which the model was configured. 

For data at rates slower than 1 Hz, the absence of data in a cycle meant that either the value was not in the downlink 

in that 1 second cycle, or it had been received but was the same as the previous downlinked element, since ISP does 

not provide frame boundary information. 

E. Fault Detection 

The first step in performing fault diagnosis was to sample the downlinked data and perform tests on the data values. 

Tests could evaluate to PASS, FAIL or UNKNOWN, and the vector of test results were sent to the TEAMS-RDS 

diagnostic reasoner. The Fault Detector subscribed to ISP data and performed the data testing needed for diagnosis, 

after some pre-processing to filter and frame the data. 

Prior to testing for a threshold value, the data was first tested for a variety of possible validity errors. The MCC 

data interface system reported if the data was static, such as in planned or unplanned Loss of Signal (LOS) periods 

and if so, no further testing was performed and test results on the data were set to UNKNOWN. In addition, ACAWS 

pre-processed the incoming data to determine if a value was off-scale low or high, which could indicate a sensor 

failure, analog-to-digital input/output (ADIO) conversion problem or other data transmission failure. Data was also 

tested to determine if it was not changing as often as expected. Most sensor values would change periodically even if 

the measured value was quite stable, so if a change was not observed for several data cycles the value was tagged as 

“flat-lined” (to differentiate from a static indication in the downlink) and the value would not be tested. The method 

was effective in differentiating between sensor faults and faults in a functional component. The UNKNOWN test 

result does not contribute to a diagnosis, so a false positive will not normally result from the flat-line filter, but was 

 

Figure 7. A D-Matrix correlated to the model fragment in Figure 6 is 

the key to run-time diagnosis. A ‘1’ indicates that the test in the column 

heading detects the failure mode in the rows. The diagnostic reasoner uses 

the test results provided to the D-Matrix to determine the root cause that 

best explains the complete fault signature. 
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effective at removing possibly suspicious data from diagnoses. If the data really was nominal but just exceptionally 

stable, diagnosis would be completed using any other tests, and the worst case would be that a component’s fault state 

would be UNKNOW until data resumed updating. Without the flat-line filter, a sensor that had stopped updating 

would continue to yield a PASS result, and if a component failure occurred, the old and non-changing data might 

incorrectly exonerate the fault. Flat-line tests generally were not used individually to diagnose faults, but there were 

some failures that were characterized by whole groups of sensors freezing concurrently at their last value. 

The relations between sensor, data transmission and component faults are illustrated in Figure 8. Consider a pair 

of redundant temperature sensors that are used to detect a battery over-temperature fault. Component failures are in 

boxes numbered 1 through 4, and tests are represented by the circles numbered 1 through 6 in the figure. Each sensor 

(box 3 and 4) could fail with an off-scale reading, or an ADIO converter failure (box 2) could result in both sensors 

flat-lining at their last in-range value. If either invalid case is detected, the ACAWS Fault Detector flags the sensor 

value as off-scale or flat-line, otherwise the values are valid. If either sensor is flagged as invalid, the Fault Detector 

sends UNKNOWN to the corresponding temperature tests (circle 1 or 2) that are used to detect a battery over-

temperature fault (box 1). Suppose the Fault Detector identifies an off-scale value on Sensor A data and sends a FAIL 

result to the Sensor Offscale test (circle 3). Because the value is invalid, Fault Detector sends UNKNOWN to 

Temperature A test (circle 1). TEAMS-RDS will diagnose the Battery Temp Sensor A as failed. If Temperature B test 

result is PASS, TEAMS-RDS will determine that the Battery Overtemp fault is not present and the battery is still 

nominal, but now it must base its determination on a single sensor. Now suppose that the Battery ADIO converter 

fails and Fault Detector identifies both Temp Sensor A and B data as flat-lined. Tests 4 and 6 both receive a FAIL 

value, and TEAMS-RDS diagnoses the Battery ADIO (box 2) as FAULTED. The Fault Detector now sends 

UNKNOWN test results to both temperature tests (circles 1 and 2) and the Battery Overtemp fault (box 1) is 

undetectable because all tests that could detect the fault are unavailable. Furthermore, if the sensor data is flat-lined, 

it is no longer possible to know if the 

actual data has gone to off-scale, so the 

tests for off-scale (tests 3 and 5) should 

also be UNKOWN, and the Temp 

Sensor failure modes (boxes 3 and 4) 

are undetectable. 

Pre-processing also included the 

use of test suppression based on 

system configuration or prior faults. If 

a component was turned off, for 

example, the tests on its temperatures 

or voltages would not be performed. 

Data that reported the system 

configurations were tested and rather 

than being sent to the TEAMS model, 

test suppression logic was used that 

would override the computed test 

results and send an UNKNOWN result 

to the TEAMS-RDS reasoner instead. 

This method was effective in filtering 

tests once a failure had occurred, as 

well as preventing diagnosis on 

equipment that was not in use. For 

example, a backup coolant pump 

would not be tested for pressure output 

when it was turned off, so its tests 

would be suppressed until it was 

turned on. 

The Fault Detection application 

performed a data framing function for 

telemetry that was downlinked at 0.1 

Hz. This was needed to assure that test 

 
 

Figure 8. Tests on data values are correlated with tests of the sensor 

validity. Tests are indicated in circles, and component failure modes in 

boxes. The Fault Detector evaluates telemetry data and sends PASS, FAIL 

or UNKNOWN to each test based on data tables that define the test 

conditions. Tests 1 and 2 are data value tests, while test 3 through 6 are 

validity tests. When validity tests FAIL, corresponding value tests using the 

data are UNKNOWN. In addition to suppressing data value tests, validity 

tests can be used for diagnosing failures of sensors and data processing 

components.  
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results were only sent to TEAMS-RDS when data was received, and UNKNOWN results on the remaining cycles. 

Without the framing, a slow rate value could indicate a PASS for a few cycles after a fault occurred, which would 

exonerate the actual fault. When received from ISP, it was not known if the absence of a new value meant that a value 

was not downlinked in that particular 1-second data cycle or if it was received but had the same value as the previously 

downlinked data element. To frame the data, the Fault Detector maintained a counter on each of the data values with 

a downlink rate slower than 1 Hz. After 10 cycles, the value would be evaluated as new data and a test result would 

be evaluated and the counter was reset. If a new value was received before the counter expired, it would be evaluated 

and the counter reset. Since ISP was not rigorously synchronized to on-board clocks, the data occasionally updated a 

cycle earlier or later than expected, and this technique kept the data well-framed, sufficient for the types of failures 

for which the model was built to detect.    

Once the pre-processing was completed, tests on data values were performed. Tests on telemetry values ranged 

from simple limit or range checks and equalities, to somewhat more complex tests involving multiple telemetry values. 

The simple tests were specified in a comma-separated values format, with a comparison operator that took one value, 

or a range operator with two values. Comparison operators included equal, not equal, less than or equal, less than, 

greater than or equal, and greater than. Range tests included an in-range test, that is, a test that fails if the value is 

between the lower and upper bound, and an outside-of-range test that fails if the value is at or outside of the lower and 

upper bounds. 

For more complex conditions, a tool developed by NASA for flight controller computations on telemetry, ISP 

Advanced Tool of Math (ATOM), was used. ISP ATOM is a simple interpreted scripting language that allows for 

arithmetic and logical expressions, and storage of variables from one execution cycle to another. ISP ATOM reads 

telemetry values directly from ISP and publishes results back to ISP as unique data elements. The Fault Detector 

received the ATOM outputs and processed them as any other telemetry element. The ATOM scripts used by ACAWS 

always generated a PASS, FAIL or UNKNOWN result for consumption by the TEAMS-RDS reasoner. Since ISP 

ATOM operated before the ACAWS Fault Detector obtained the data, the ACAWS pre-processing values were not 

available to ATOM. This required an engineering trade-off for the more complex tests for which ATOM was well 

suited. On one hand, the Fault Detector pre-processor could easily be configured by providing a table of off-scale high 

and low values for each telemetry item, and a flat-line cycle count to specify how many unchanged values would be 

observed before setting the flat-line status. ATOM would have required several lines of scripting code to perform the 

same functions, so it was not considered viable to use ATOM for all telemetry validity testing. The options were to 

perform similar off-scale and flat-line testing of the telemetry used in the ATOM script before the test logic on the 

telemetry values, which made scripts significantly more complex, or use the values without additional validity testing, 

which could have resulted in incorrect test result if a sensor failure resulted in an invalid value. Generally the tests 

were used without the added validity testing. No problems were encountered during testing or the flight due to this 

simplification, although a robust flight system would probably need to avoid this sort of simplification. 

F. Diagnostic Executive 

The Diagnostic Executive received a vector of test results from Fault Detector and packaged them for transmission 

to the TEAMS-RDS diagnostic reasoner, and received the results from the TEAMS-RDS reasoner and distributed the 

results. Diagnostic Executive formatted the test results from Fault Detector and transmitted them to TEAMS-RDS 

once per second. TEAMS-RDS executed as a separate process with a TCP/IP interface. It was designed to be able to 

execute on a remote machine, although for the EFT-1 flight, RDS executed on the same machine as the ACAWS 

Diagnostic Executive, Fault Detector, System Effects Reasoner and ISP server. 

When diagnostic results were received from TEAMS-RDS, they were transmitted to the Graphical User Interface 

(GUI), along with telemetry data used to provide an explanation of the diagnosis, and configuration information for 

equipment with switches or other on/off controls. The test lab used up to five copies of the ACAWS GUI, there was 

no defined limit on the number of GUI connections permissible. 

Diagnostic results were also sent to the System Effects Reasoner each time the diagnosis changed from the previous 

cycle. The System Effects Reasoner transmitted results to the GUIs and did not respond back to the Diagnostic 

Executive. 

An adjunct application to the Diagnostic Executive was used to buffer data so that GUI clients that were started 

after the Diagnostic Executive or System Effects Reasoner would receive the current health state data. Since 

diagnostics and effects results were sent when changes were made, a late-joining client would otherwise miss failures 

that occurred previously and were still present. 
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G. System Effects Reasoner  

A System Effects Reasoner was developed at NASA Ames Research Center to determine the effects of a fault on 

other system components9. The System Effects Reasoner operates on an XML representation of the same TEAMS 

fault model as the diagnostic reasoner uses, with a graph traversal algorithm to trace a fault from the origin to all 

affected elements, as shown in Figure 9. The graph follows the connections in the TEAMS model, using the same 

propagation paths used for diagnosis. Whereas diagnosis traces backwards from tests to the source of the TEAMS 

functions to converge on the root cause fault, System Effects Reasoner traced forward on the comparable paths, 

fanning out from the diagnosed fault to all the components affected by the fault. The System Effects Reasoner used 

the test points as the end nodes of the graph traversal. The diagnostic test nodes were used by the System Effects 

Reasoner, but they were not always sufficient to determine all the effects. Diagnosis could be done by sampling data 

downstream of the fault without testing every data value that was affected by the fault. To identify all the affected 

components, however, every propagation path had to be explicitly modeled. For System Effects, extra test nodes not 

required for diagnosis were added that were labeled as “impact points”.  The TEAMS Designer features for creating 

the D-matrix and other run-time diagnostics data were able to use the test labels to exclude the test points used only 

for effects modeling. In essence, the TEAMS model included both a diagnostics model and an effects model, with 

substantial overlap between the two. 

The EFT-1 Orion spacecraft, as do all modern spacecraft, included extensive redundancy. Fault effects include 

both loss of function and loss of redundancy. Loss of function occurs either as a result of a single fault for which no 

redundant component provides a necessary resource, or as a result of multiple faults causing loss of all legs of 

redundancy. When the resources required for a function are still present but now provided by fewer sources, the 

System Effects Reasoner reported a loss of redundancy condition. The ACAWS system was implemented to report 

loss of redundancy when redundancy was reduced to a single redundant path, that is, a single additional fault would 

cause loss of function. This choice was made in consultation with NASA flight controllers who typically must 

determine “next worst failures” after an initial failure occurs. Presenting only the components at risk of loss due to a 

single failure was most consistent with flight controller assessments of next worst failure, and displaying information 

about components that have gone from, for example, triple redundancy to dual redundancy, would have complicated 

 
Figure 9. The System Effects Reasoner traverses the model to identify the effects of a fault. The illustration 

starts from a faulted battery and follows paths to components that lose functionality due to the fault (blue line), 

and to components that lose a redundant resource (orange line). The AND node (semicircle labeled ‘1’) does not 

represent a physical component, but indicates to the System Effects Reasoner where redundant paths join. 
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displays and reduced the ability to see the components most at risk of loss. This was, however, a modeling choice that 

could be modified to include any reduction of redundancy. 

H. Graphical User Interface 

A Graphical User Interface (GU) was developed to display both real-time results and controller queries about 

possible or hypothetical faults, in a “what-if” mode of operations. 

Health state information was displayed using icons attached to component and group annunciators. Some of the 

primary health state icons are shown in Figure 10, as they would be shown in the GUI annunciators, or display boxes 

labeled with a component or group name. Without an icon, the component is assumed to be operating normally and 

unaffected by any other fault. Health state information included: 

• faulted components – a confirmed root cause fault; 

• possibly failed components – an ambiguity group, used when a single fault cannot be isolated; 

• affected components – components whose function has been lost or diminished by a fault in another 

component; 

• possibly affected components – when diagnostic ambiguity exists, any components that would be affected by 

some but not all of the diagnostic ambiguity set are identified as possibly affected; 

• configuration affected by FDIR –  when the on-board FDIR takes actions to reconfigure the system in some 

fault conditions, ACAWS displayed the affected configurations, typically switches either turned off or on by 

FDIR; 

• diagnostic explanation – the test algorithms, telemetry values and test results used to diagnose or exonerate a 

failure mode; this proved very valuable in providing confidence in the diagnostic results allowing operators 

to compare the ACAWS logic with their own extensive systems knowledge. 

In addition to the run-time results, several capabilities used the same model and logic to present operator queries, 

either in an off-line mode or in a hybrid mode10. In the off-line mode, real-time diagnoses would not be accepted, and 

only operator queries would be considered. The flight controller could specify one or more hypothetical failure modes 

and configurations and query the system to determine the components that would be affected if the specified failure 

modes had occurred. In the hybrid mode, the current real-time diagnoses would continue to be displayed and evaluated, 

 
Figure 10 – Display icons were used to indicate faults and effects of faults. Diagnostic and System Effects are 

shown in blue boxes at the left side of component annunciators. Boxes to the right side of annunciators indicate 

ON/OFF states. A filled box indicates ON, an open box indicates OFF, and magenta border indicates that the 

configuration was set by FDIR. 
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and the controller could determine what would be affected if other components were to subsequently fail. A direct 

“next worst failure” query was also available; after a failure, the components that had lost redundancy from the first 

failure could be selected to determine what single faults would cause loss of function of that component. Flight 

controllers could use these features to explore possible failure scenarios that help them to make operational decisions 

to avoid or plan for possible further failures. 

The Orion spacecraft has thousands of components, with each component having multiple ways that each can fail. 

The quantity of information presents challenges to designing a display. In failure situations, operators need ready 

access to information, without having to traverse many screens to get to the information. The ACAWS displays used 

combinations of graphical schematic representations, annunciator panels with hierarchically organized components, 

and text displays listing diagnosed failures and possible failures. The goal was to get to the necessary information in 

at most three screen changes, and two changes whenever possible. Information roll-up was done in two forms – 

components with subcomponents, and groups of related components. The effect of a failure of a subcomponent on the 

functionality of the total component could vary considerably. For example, a power control card consists of several 

Remote Power Controller (RPC) subcomponents, and a failure of one would not affect the overall card’s function 

other than the particular RPC, but a card controller or card power interface could fail resulting in total loss of function 

of the entire card. Total loss of component functionality was indicated as a loss of component functionality, whereas 

failures that affected only particular subcomponents were displayed using a “failure inside” icon, which required the 

operator to open another panel to see the particular failure mode. The other information roll-up used groups of similar 

components, such as the pyrotechnic initiators in the landing and recovery system. If any component in the group had 

failed, a failure icon was displayed on the group annunciator panel, and the operator would open another annunciator 

panel containing the members of the group. 

I. Mission Control Center Applications 

In addition to the ACAWS diagnostic elements described above, the demonstration and evaluation environment 

for ACAWS included the primary flight control displays used in the EFT-1 Mission Control Center. The displays are 

used to present telemetry data for each of the subsystems, including sensor data, configuration such as switch positions, 

FDIR data, pyro event sequences, mission phase and other operational and health data. The flight control displays 

connected to the same ISP server as the ACAWS applications used, allowing the ACAWS flight observers to see the 

same data that the EFT-1 flight control team used. The environment enabled a direct comparison between the 

information provided by current flight control tools and health state information provided by ACAWS. ACAWS 

displays were designed to augment the currently available information, not to replace existing displays that include 

both operational control and system health information. The MCC displays were used both for the flight demonstration 

and for an extensive evaluation conducted prior to flight, as will be described in the following section. 

VI. System Testing and Evaluation 

The system was tested extensively using nominal test data from the Orion Program and combined with fault 

signature data developed by the ACAWS test team and supported by NASA Flight Operations Directorate. Nominal 

data was recorded when Orion test data was transmitted to the Mission Control Center, either from the Orion EFT-1 

spacecraft during vehicle checkout, or from Orion test and simulation systems. The ACAWS test team identified the 

telemetry that would be affected by failures and developed a fault specification methodology to overwrite the nominal 

data with the faulted data. For example, if a battery fault would be characterized by a low voltage and rising 

temperature, the sensor values and timing of the changes were specified, and a script would read the nominal data and 

replace the data assumed to be affected by the failure. 

A series of failure scenarios were built up using these methods for a controlled evaluation of the ACAWS system 

with teams of NASA flight controllers, in a configuration designed to function as a flight control room mockup, as 

shown in Figure 11. The purpose of the evaluation was to validate design decisions made in ACAWS development, 

elicit additional requirements for future development, and to obtain objective evidence for the value of higher order 

fault management information than has been available for prior human space flight vehicles. 

Flight controller participants were separated into two groups of four, where each group consisted of three controller 

positions and a Flight Director. Each group participated in two test sessions separated by two weeks to reduce the 

effect of learning on performance. Test sessions consisted of 8 scenarios, each 9 to 10 minutes duration, and containing 

two or three independent faults. The conditions were counterbalanced so that one group received the baseline condition 

first, using only the displays used by the EFT-1 Flight Control team for the actual flight, and the other group received 
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the baseline plus ACAWS condition first, using the ACAWS information and displays in addition to the EFT-1 

displays. Communications loops were used to provide realistic communications between controllers and the flight 

director. All communications were recorded for use in later analysis, as were all cursor and keyboard movements and 

screen layouts. Evaluation questionnaires were completed for each scenario and also upon completion of each test 

session to obtain the subjective judgment of the flight controller evaluators regarding the strengths and weaknesses of 

the system as currently designed and what additions and modifications would be most beneficial.  

During data analysis, it became apparent that both groups retained memory of the scenarios in the second run, 

which made it somewhat difficult to obtain pure objective comparisons. The teams had only brief training and 

familiarity with ACAWS displays, but extensive experience with the tools used for EFT-1 flight control display and 

some familiarity with Orion design, even though the teams were not the EFT-1 Flight Controllers. The data did not 

reveal a significant reduction in workload when using ACAWS. Both groups had more difficulty in the first session 

in diagnosing faults and making control decisions to respond to the faults regardless of ACAWS use. By the second 

session, they had become more familiar with the failures and were quicker to recognize and respond. Nevertheless, 

the flight controller inputs to the ACAWS evaluation indicated that the information provided by ACAWS would be 

an effective aid in rapidly understanding failures and responding more quickly and accurately with adequate training 

and familiarity with ACAWS. 

The exercise was conducted to assess the information requirements for higher autonomy systems, and also to 

evaluate the ACAWS system as a ground operations tool. We coordinated closely with the NASA Astronaut Office 

group that is developing Orion on-board display requirements and prototype displays to demonstrate the quality of 

information available from the ACAWS system. Current focus of the display development group is on the first Orion 

crewed mission, but beyond EM-2 with potentially long-duration missions to an asteroid, the information that 

ACAWS demonstrated will be vital on-board information needed to meet the spacecraft autonomy requirements 

including unassisted handling of failures. 

 
Figure 11. The test and evaluation environment. The ISP Data Server played back fault scenarios 

constructed from recorded Orion test data with injected faults to the ACAWS reasoners and Flight Controller 

displays. Voice communication loops added operational realism and allowed for recording of discussions by 

evaluators. 
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VII. EFT-1 Flight Results 

The ACAWS system monitored the telemetry downlink from the Orion Exploration Flight Test 1 (EFT-1) mission 

in December 2014, from pre-launch through post-landing power-down. The first launch attempt resulted in a scrub 

due to high winds at the launch site and minor system issues. The second attempt on the following day culminated in 

a nominal launch at the opening of the launch window, Figure 12. The 4 ½ hour mission was nearly fault-free. ACAWS 

detected a single sensor failure, found to be a result of damage during vehicle assembly. 

The ACAWS system was configured to detect and display approximately 3500 failure modes, ranging from sensor 

faults to major system component failures, monitoring approximately 2500 unique telemetry elements. The system 

executed on a Linux laptop at a 1 Hz execution rate. 

Although a rigorous performance analysis was not conducted, the system appeared to handle the throughput with 

ease. Through the two days of monitoring the data, including about 3 ½ hours on the first attempt, and 6 hours during 

the successful mission, the ACAWS system received and processed all data without interruption or running behind 

the flight data. 

As would be expected with the initial flight of a new 

spacecraft, there were notable differences between flight data and 

the test data used for system testing. Some of these differences 

included: 

• Environments. The thermal environments, during pre-

launch and throughout the mission, were considerably 

different than had been simulated. Prior to launch there 

were temperature sensors reporting temperatures outside 

of the nominal control ranges, which ACAWS 

interpreted as possible heater or power failures. Once in 

flight the heaters all behaved nominally and ACAWS 

cleared the heater faults, although the flight thermal 

environments varied considerably from the simulated 

environmental data used in testing. 

• Configurations. Although testing generally accounted for 

all planned configurations, there were timing and 

sequencing variations that had not been observed by the 

test data used with ACAWS, notably in the post-landing 

power-down sequence. ACAWS diagnosed at least one 

fault in late post-landing power-down sequence that was 

due to components being turned off per the plan.  

• Data dropouts. Although simulated test data included 

some loss of signal events, the actual flight was the first 

time that ACAWS had been exercised throughout the 

reentry blackout and with low data rates during ascent 

while the Launch Abort System was attached to the 

spacecraft. ACAWS handled the loss of data without 

false diagnoses due to loss of signal. 

• Data variability. The degree of data variability was 

somewhat different from test data. Many of the measured 

values varied in flight by only one or two calibration 

counts (the raw sensor units after conversion from analog 

to digital, but prior to conversion to engineering units), whereas typical test data showed a little more jitter. 

This affected the “flat-line” pre-processor test to filter out possibly unresponsive sensors. The flat-line 

thresholds were set based on the Orion program test data. Although no false positives or false negatives were 

attributed to these variations, program maturation will need to improve these types of data filtering. 

Monitoring of the flight data commenced about 30 minutes prior to launch. Although the project objectives had 

not included pre-launch or post-landing system fault diagnostics, and very little effort was put into assessing the pre-

launch data and environments, the opportunity was taken to connect and begin the evaluation before launch. Some of 

the pre-launch thermal environments proved to vary significantly from the expected flight environments, and several 

heaters, heater controllers and power sources were diagnosed by ACAWS as possibly failed. Temperatures were well 

 
Figure 12. The Orion EFT-1 spacecraft 

begins its 4 ½ hour mission atop a Delta IV 

Heavy launch vehicle at Cape Canaveral, FL on 

December 5, 2014 
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below both the primary and secondary setpoints, and both primary and secondary heater switches were turned on, 

which were determined by the diagnostic reasoner as indicating that something was malfunctioning. None of the data 

signatures matched the model perfectly, however, and post-flight analysis confirmed that the heaters were behaving 

nominally but in an unanticipated environment. This yields a valuable requirement of a robust diagnostic system that 

the full range of system environments must be handled. Otherwise, “ops work-arounds” will be accumulated, requiring 

an ever more complex operations system and more training to differentiate between “real failure” and “unusual but 

nominal” situations. 

Shortly prior to launch, when the ground umbilicals were disconnected, the data stream was reduced to a small 

trickle of critical data. The Orion communications system was shielded by the Launch Abort System until separation 

about 6 minutes into launch, so the only available data was through the Delta launch vehicle’s payload interface until 

separation and the Orion spacecraft’s data was transmitted to the MCC via the Tracking and Data Relay Satellite 

System. The transition from pre-launch to launch data had not been tested prior to flight. ACAWS handled the 

transition well. Any prior diagnoses remained, since there was no data that could exonerate any failures. Once data 

reconnected after Launch Abort System separation, some of the false diagnoses persisted due to an inadvertent test 

suppression that precluded the now nominal thermal data from exonerating the faults. A quick system reset cleared 

the situation and nominal diagnoses returned. Post-flight analysis led to a simple data adjustment and playback of the 

flight data resulted in correct diagnosis with no false positives or ambiguity. This points to another key requirement 

for a flight diagnostics and autonomy system, that when unanticipated flight data reveals untested conditions, the 

system must be quickly reconfigurable to adapt to the newly acquired information. Months of analysis, retesting and 

recertification of such systems will diminish their value significantly if not fatally. 

A few other conditions were revealed during flight, but all were resolved within a few weeks, and subsequent 

playback of the complete mission was conducted with no false positives or missed detections during the flight, from 

Launch Abort System jettison to well past splashdown. 

VIII. Conclusions  

The technology is well beyond proof of concept but considerable maturation and scaling are needed to provide the 

objective evidence of the “proof of value” and “proof of readiness” needed for human space flight programs to build 

the ACAWS capabilities into program requirements and design baselines. 

Programmatic infusion will require that programs either define new requirements not previously implementable, 

or determine that significant and measurable improvements can be made in the implementation of existing 

requirements, including lower cost, less risk, or improved performance. Performance improvements could include 

reduced processor or power needed for health state information management, or perhaps increased coverage of failures 

detected and managed on board, although that could be considered a new requirement. Programs will then need to see 

that the technology can be developed, tested and verified with acceptable cost, schedule and technical risks. 

The project goal was to make as much headway toward these issues as possible, and to gain further clarity about 

the remaining issues so that follow-on phases and future technology projects can address the right issues. A potential 

risk for technology projects is that they continue to do proofs of concept, and raise Technology Readiness Level (TRL) 

from 4 to 5 over and over again. 

The project achieved its scalability objective, using about 10% of the Orion downlink, covering all EFT-1 electrical 

power system components and most electrical equipment in vehicle subsystems. Although an estimate of the data 

required for complete coverage of fault management needs, as compared with data used only for operations, was not 

completed, the project showed that diagnostic systems can scale toward realistic operational requirements. 

The project also achieved its objectives to operate in an operationally realistic setting, with opportunity to analyze 

variations between test and flight data, including environments, configurations, communications uncertainty and 

unanticipated data variability. 

Future technology maturation that will help to prepare this technology for full-scale flight program infusion should 

include capabilities to: 

• Continue to scale up sufficiently to analyze the performance metrics and system development effort that will 

be required of a fully operational system. 

• Develop models and data across a more diverse set of subsystems, including power, data, and mechanical 

systems, to assure that fault detection and isolation methods integrate well. 

• Improve and integrate the data filtering and levels of processing needed to distinguish between incorrect data 

and system faults, including sensor and data transmission faults. 
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• Develop more stringent methods for avoiding false positives and missed detections, and derive requirements 

for acceptable rates of incorrectness. Methods for developing and testing across the range of environment 

variability, system configurations, and data noise are a significant need for achieving accurate, reliable and 

trustworthy fault information. 

• Design in methods to assure that new information can be quickly inserted into models and systems. 

• Conduct model development cost assessment and analysis, including continued development of model 

automation from primary data sources. Cost and value uncertainty is a significant impediment to deployment 

of technologies that are promising but that have not fully proven their value where rigorous verification and 

certification is required. 

• Provide analysis and determination of the requirements for the accuracy and trustworthiness of information, 

and the ability of fault management technology to meet the requirements. 

The potential failure space of a complex system is vast, and systems excel at presenting new and unexpected ways 

to fail. Fault management technology designers must deal with the challenges of very large numbers of possible 

failures with a mature understanding of the fault management requirements and the programmatic, technical and cost 

risks remaining to be mitigated in order to deploy spacecraft with highly autonomous fault management capabilities. 

The Orion EFT-1 ACAWS project made significant strides toward demonstrating scaled up, accurate, trustworthy, 

and operationally significant fault information. Full-scale operational deployment of fault management technology 

faces significant remaining challenges that will need to be overcome to achieve difficult fault management autonomy 

requirements for future operations. 
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